
art and LArSoft course schedule

Draft version 1

Contents

1 Monday 2

1.1 Session 1: Basics of C++ . 2

1.2 Session 2: Basics of objects . 2

1.3 Session 3: Basic data structures 3

1.4 Session 4: Framework introduction 3

1.5 Session 5: Setup for using art . 3

1.6 Session 6: Setting up for development of experiment code 3

2 Tuesday 4

2.1 Session 7: More module interface 4

2.2 Session 8: Details of module configuration 4

2.3 Session 9: Multiple instances a module 4

2.4 Session 10: Using existing data products 4

2.5 Session 11: Making histograms. 5

2.6 Session 12: Running multiple modules 5

3 Wednesday 5

3.1 Session 13: Creating a Producer 6

3.2 Session 14: Inventing a new data product 6

3.3 Session 15: Controlling output 6

3.4 Session 16: Introducing iterative algorithm development. 6

3.5 Session 17: Writing a new algorithm. 6

3.6 Session 18: Using the algorithm in a producer 7

1

4 Thursday 7

4.1 Session 19: Some additional art facilities 7

4.2 Session 20: Using Assns and smart query objects 7

4.3 Session 21: Creating Assns . 7

4.4 Session 22: Code design issues. 8

4.5 Session 23: Good art workflow 8

4.6 Session 24: Reorganizing a supermodule. 8

5 Friday 8

5.1 An introduction to LArSoft . 8

5.2 Hands-on refactoring of code . 9

Note: almost all “talks” are scheduled to be 20 minutes. This should be an
upper bound; if only 15 minutes are needed, the extra time can go to discussion
at the end.

1 Monday

The goal of Monday morning is to get people up to speed on some critical parts
of C++ upon which we will rely for the entire course. We will introduce some of
the basics of good coding practice. Some registrants for the course might not
need this material. The material is designed that such students can skip this
session.

The goal of Monday afternoon is to introduce people to the parts of the framework,
and to the environment in which framework programs are run.

1.1 Session 1: Basics of C++

1 hour: 20 minutes talk, 30 minutes working, 10 minutes wrap-up.

Pointers and references. Function calling and argument passing (reference and
value); function return values. Compiling and linking; creating dynamic libraries.
Understanding the difference between compilation and link errors.

1.2 Session 2: Basics of objects

1 hour: 20 minutes talk, 30 minutes working, 10 minutes wrap-up.

Object lifetimes. RAII, shared_ptr and unique_ptr. Avoiding use of new and
delete; avoiding use of static.

2

1.3 Session 3: Basic data structures

1 hour: 20 minutes talk, 30 minutes working, 10 minutes wrap-up.

Introduction to correct use of std library components array, vector, map, and
unordered_map. Performance characteristics; when to use each. Relying on
move constructor for efficient use. Correct initialization.

1.4 Session 4: Framework introduction

30 minutes, talk.

Overview of the major features of the framework; what the framework does for
you. Where your code goes into a framework program.

1.5 Session 5: Setup for using art

1.5 hours: 20 minutes talk, 45 minutes working, 25 minutes wrap-up.

Based on workbook exercise 1. Introduces the art runtime system.

1. UPS products
2. setup command
3. executing art, use of a few command-line flags.
4. Creating output files.
5. Basic introduction to FHiCL configuration file for art.

1.6 Session 6: Setting up for development of experiment
code

2 hours: 20 minutes talk, 90 minutes work, 10 minutes wrap-up.

Based on workbook exercise 2, but we should use mrb rather than cetbuildtools
directly.

Goes all the way from cloning a git repository with source code, using mrb for
building what has been cloned, up to looking at a module, running artmod to
create a module.

Exercises should include: 1. Fixing a canned compilation failure 2. Fixing a
canned link failure 3. Fixing a failure to find a module

3

2 Tuesday

The goal of Tuesday is to familiarize people with the development environment,
in the context of starting to analyze data (i.e. making histograms) in the art
setting.

2.1 Session 7: More module interface

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Introduce re-establishing a development environment after logging out of a
previous shell session. Introduce the full EDAnalyzer interface; introduction to
Run and SubRun objects (but not as containers of products yet). Understanding
the module lifecycle.

Based on workbook exercise 3.

2.2 Session 8: Details of module configuration

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

How to correctly write a module constructor. How to use ParameterSet objects.
How to handle errors in constructors. Revisit RAII here, and use of compiler-
generated member functions when possible. Revisit override keyword. Introduce
art exception class.

Based on workbook exercise 4.

2.3 Session 9: Multiple instances a module

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Understanding module instances, and the concept of having more than one
instance of the same module class in a workflow. Understanding the ordering
guarantee (after producers and filters, but not ordered relative to each other)
provided by art for analyzers (and output).

Based on workbook exercise 5.

2.4 Session 10: Using existing data products

30 minutes: 20 minutes talk, 10 minutes questions.

How to find data products, how to read headers to understand data products.
Introduction to some good data product design practices. The examples should
be from LArSoft data products.

4

2.5 Session 11: Making histograms.

2 hours: 20 minutes talk, 90 minutes work, 10 minutes questions.

Accessing event data products; introduction of details of module label and module
type. Using ValidHandle; Handle is for special cases only. Simple configuration
of analyzer modules; understanding module execution order guarantees provided
by art.

Using data product classes, iterating through sequences, filling histograms.
Introduction to TFileService: how to configure, where it writes output.

Using Standard Library algorithms and lambda expressions to loop over data
products. Reasons to prefer SL algorithms to explicit loops; avoiding fencepost
errors, avoiding trivial inefficiencies, avoiding needless copies and conversions.

Combining examples 6 and 7 of the workbook, modified to use LArSoft data
products.

2.6 Session 12: Running multiple modules

1.5 hours: 20 minutes talk, 60 minutes work, 10 minutes questions.

Run a chain of reconstruction algorithms. Write an analyzer that compares data
products from two different algorithms. Practice using art::InputTag to identify
products; practice seeing how the configuration file determines how products are
labeled. Introduction to paths, and the order in which producers are executed.
How the framework avoid running the same configured module more than once.

At this point we have run out of workbook exercises to use.

3 Wednesday

The goal of Wednesday is to introduce people to writing producers, using good
software development practices: iterative code development, writing modular
code, and testing. We also introduce the creation of new data products.

5

3.1 Session 13: Creating a Producer

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.
Canonical form of a producer (get/do/put pattern). How Event::put works; how
data products are labeled. How the FHiCL file controls each producer’s module
label and the process name. How to create an instance of a data product.

3.2 Session 14: Inventing a new data product

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.
Design guidelines for new data products following the art data product design
guide.
Producing dictionaries for ROOT. We are currently using ROOT5. We’ll be in
the process of moving to ROOT 6 around the time of the class. This may give
us some problems to solve.
Need a good motivating example for writing your own data product.

3.3 Session 15: Controlling output

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.
Introduce the output system’s ability to do event selection and product selection.
Detailed configuration of RootOutput. Keep/drop lists. Configuration and
meaning of drop on input.
Controlling compression levels. Writing multiple output files.

3.4 Session 16: Introducing iterative algorithm develop-
ment.

30 minutes: 20 minutes talk, 10 minutes questions.
Introduce the ideas behind iterative development of algorithms, and designing
code for testability.

3.5 Session 17: Writing a new algorithm.

2 hours: 20 minutes talk, 1.5 hours work, 10 minutes wrap-up.
Implement in code an algorithm specified as part of the problem. This algorithm
should be suitable for coding in a single module, not as several modules. Write
unit tests for the algorithm. Use the build tools to build and run the tests.
Illustrate how to work on the algorithm outside of the framework. Illustrate a
clear separation between unit testing and physics validation.

6

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide
https://cdcvs.fnal.gov/redmine/projects/art/wiki/Data_Product_Design_Guide

3.6 Session 18: Using the algorithm in a producer

30 minutes: 5 minutes talk, 20 minutes work, 5 minutes wrap-up.

Use artmod to generate the skeleton of a producer. Insert the algorithm written
in the previous session into the producer. Write the integration test that executes
the producer.

4 Thursday

The goal of Thursday is to gain more experience in modularity. This includes
the development of a set of algorithms (only need two) that need to be split up
between modules. Should extend the previous day’s work. Introduce people to
some of the more advanced framework tools (association collections, FindOne
and FindMany smart query objects, services), as well as the art command line.

4.1 Session 19: Some additional art facilities

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Explanation of full set of art command-line options. Use of configuration
dumping facilities. Introduction to the most important of the standard services:
TimeTracker, MemoryTracker, Tracer.

Any others? Do we need to deal with RandomNumberGenerator or can we agree
that it is too much of a special-purpose thing for this class?

4.2 Session 20: Using Assns and smart query objects

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Use a canned module that creates some product from the output of Wednesday’s
producer, and Assns between that product and Wednesday’s product.

Write an analyzer that uses FindOne or FindMany to obtain information to fill
histograms. This doesn’t directly require that users see the Assns object.

4.3 Session 21: Creating Assns

1 hour: 20 minutes talk, 30 minutes work, 10 minutes wrap-up.

Write a producer that does something like what the “canned producer” above
does. Understand how to create Assns objects.

7

The Thursday afternoon session schedule is much more tentative than
the previous days’ schedules.

4.4 Session 22: Code design issues.

Using class design to help simplify code. Putting behavior into classes, rather
than having code pull data members out of a class to manipulate them externally.
The value of cohesive classes.

Function design. Abstractions, useful generalizations. Controlling dependencies.

4.5 Session 23: Good art workflow

Understanding how to break up a large task into several parts, each handled
by a module. Understanding how to design a set of modules to work together
(rather than inventing a new sub-framework within a single module).

This might be best as a design session in which no actual code is written.

4.6 Session 24: Reorganizing a supermodule.

Take an existing too-large module, with too much class state and a few (or one)
overly large member functions, and plan how to break it up into pieces, using
multiple modules each of which uses one or more algorithm objects to do their
work. Redesign for testability.

This might be best as a design session in which no actual code is written.

5 Friday

This day we split into two tracks:

5.1 An introduction to LArSoft

An all-day session giving an introduction into the design philosophy and content
of the LArSoft products.

Details need to come from the LArSoft team.

8

5.2 Hands-on refactoring of code

An all-day session in which small groups (or individuals) from each experiment
works on refactoring existing code, from the experiment, to reflect what has
been learned in the course. The TAs of the course will be present to help with
the effort.

In the schedule should be a sufficient number of breaks, during which some topic
that has been identified as being of possibly general interest is called out and
discussed. The goal of this is to help each group be able to learn from the others’
experience during the session.

The goal should be that, at the end of the day, the participants can submit some
improved code back to their experiments’ repositories.

9

	Monday
	Session 1: Basics of C++
	Session 2: Basics of objects
	Session 3: Basic data structures
	Session 4: Framework introduction
	Session 5: Setup for using art
	Session 6: Setting up for development of experiment code

	Tuesday
	Session 7: More module interface
	Session 8: Details of module configuration
	Session 9: Multiple instances a module
	Session 10: Using existing data products
	Session 11: Making histograms.
	Session 12: Running multiple modules

	Wednesday
	Session 13: Creating a Producer
	Session 14: Inventing a new data product
	Session 15: Controlling output
	Session 16: Introducing iterative algorithm development.
	Session 17: Writing a new algorithm.
	Session 18: Using the algorithm in a producer

	Thursday
	Session 19: Some additional art facilities
	Session 20: Using Assns and smart query objects
	Session 21: Creating Assns
	Session 22: Code design issues.
	Session 23: Good art workflow
	Session 24: Reorganizing a supermodule.

	Friday
	An introduction to LArSoft
	Hands-on refactoring of code

